Mucopolysaccharidoses



...less medical jargon in a 'Quick Glance' format!




A condition called Mucopolysaccharidoses (MPS) occurs when the body cannot break down mucopolysaccharides, which are long chains of sugar molecules that are found throughout the body. MPS refers to a group of inherited disorders of metabolism. Persons with mucopolysaccharidoses are missing or do not have enough of an enzyme needed to break down the sugar molecule chains.

The conditions cause mucopolysaccharides to build up in body tissues. This can damage organs, including the heart.

Seven distinct clinical types and numerous subtypes of the mucopolysaccharidoses have been identified. Although each mucopolysaccharidosis differs clinically, most patients generally experience a period of normal development followed by a decline in physical and/or mental function.

. . . MPS I
Mucopolysaccharidoses I is divided into three subtypes based on severity of symptoms. All three types result from an absence of, or insufficient levels of, the enzyme alpha-L-iduronidase. Children born to an MPS I parent carry the defective gene.

  • MPS I H (also called Hurler syndrome), is the most severe of the mucopolysaccharidoses I subtypes. Developmental delay is evident by the end of the first year, and patients usually stop developing between ages 2 and 4. This is followed by progressive mental decline and loss of physical skills. Language may be limited due to hearing loss and an enlarged tongue. In time, the clear layers of the cornea become clouded and retinas may begin to degenerate. Carpal tunnel syndrome and restricted joint movement are common.

  • Affected children may be quite large at birth and appear normal but may have groin or umbilical hernias. Growth in height may be faster than normal but begins to slow before the end of the first year and often ends around age 3. Many children develop a short body trunk and a maximum stature of less than 4 feet. Distinct facial features including flat face, depressed nasal bridge, and bulging forehead, become more evident in the second year. By age 2, the ribs have widened and are oar-shaped. The liver, spleen, and heart are often enlarged. Children may experience noisy breathing and recurring upper respiratory tract and ear infections. Feeding may be difficult for some children, and many experience periodic bowel problems. Children with Hurler syndrome often die before age 10 from obstructive airway disease, respiratory infections, and cardiac complications.

  • MPS I S, Scheie syndrome, is the mildest form of MPS I. Symptoms generally begin to appear after age 5, with diagnosis most commonly made after age 10. Children with Scheie syndrome have normal intelligence or may have mild learning disabilities; some may have psychiatric problems. Glaucoma, retinal degeneration, and clouded corneas may significantly impair vision. Other problems include carpal tunnel syndrome or other nerve compression, stiff joints, claw hands and deformed feet, a short neck, and aortic valve disease. Some affected individuals also have obstructive airway disease and sleep apnea. Persons with Scheie syndrome can live into adulthood.

  • MPS I H-S, Hurler-Scheie syndrome, is less severe than Hurler syndrome alone. Symptoms generally begin between ages 3 and 8. Children may have moderate mental retardation and learning difficulties. Skeletal and systemic irregularities include short stature, marked smallness in the jaws, progressive joint stiffness, compressed spinal cord, clouded corneas, hearing loss, heart disease, coarse facial features, and umbilical hernia. Respiratory problems, sleep apnea, and heart disease may develop in adolescence. Some persons with MPS I H-S need continuous positive airway pressure during sleep to ease breathing. Life expectancy is generally into the late teens or early twenties.

  • Although no studies have been done to determine the frequency of MPS I in the United States, studies in British Columbia estimate that 1 in 100,000 babies born has Hurler syndrome. The estimate for Scheie syndrome is one in 500,000 births and for Hurler-Scheie syndrome it is one in 115,000 births.

    . . . MPS II
    Mucopolysaccharidoses II, Hunter syndrome, is caused by lack of the enzyme iduronate sulfatase. Hunter syndrome has two clinical subtypes and is the only one of the mucopolysaccharidoses in which the mother alone can pass the defective gene to a son. The incidence of Hunter syndrome is estimated to be 1 in 100,000 to 150,000 male births.

  • Children with MPS II A, the more severe form of Hunter syndrome, share many of the same clinical features associated with Hurler syndrome but with milder symptoms. Onset of the disease is usually between ages 2 and 4. Developmental decline is usually noticed between the ages of 18 and 36 months, followed by progressive loss of skills. Other clinical features include coarse facial features, skeletal irregularities, obstructive airway and respiratory complications, short stature, joint stiffness, retinal degeneration, communicating hydrocephalus, chronic diarrhea, enlarged liver and spleen, and progressive hearing loss. Whitish skin lesions may be found on the upper arms, back, and upper legs. Death from upper airway disease or cardiovascular failure usually occurs by age 15.

  • Physical characteristics of MPS II B are less obvious and progress at a much slower rate. Diagnosis is often made in the second decade of life. Intellect and social development are not affected. Skeletal problems may be less severe, but carpal tunnel syndrome and joint stiffness can restrict movement and height is somewhat less than normal. Other clinical symptoms include hearing loss, poor peripheral vision, diarrhea, and sleep apnea, although respiratory and cardiac complications can contribute to premature death. Persons with MPS II B may live into their 50s or beyond.

  • . . . MPS III
    Mucopolysaccharidoses III, Sanfilippo syndrome, is marked by severe neurological symptoms. These include progressive dementia, aggressive behavior, hyperactivity, seizures, some deafness and loss of vision, and an inability to sleep for more than a few hours at a time. This disorder tends to have three main stages. During the first stage, early mental and motor skill development may be somewhat delayed. Affected children show a marked decline in learning between ages 2 and 6, followed by eventual loss of language skills and loss of some or all hearing. Some children may never learn to speak. In the syndrome's second stage, aggressive behavior, hyperactivity, profound dementia, and irregular sleep may make children difficult to manage, particularly those who retain normal physical strength. In the syndrome's last stage, children become increasingly unsteady on their feet and most are unable to walk by age 10.

    Thickened skin and mild changes in facial features, bone, and skeletal structures become noticeable with age. Growth in height usually stops by age 10. Other problems may include narrowing of the airway passage in the throat and enlargement of the tonsils and adenoids, making it difficult to eat or swallow. Recurring respiratory infections are common.

    There are four distinct types of Sanfilippo syndrome, each caused by alteration of a different enzyme needed to completely break down the heparan sulfate sugar chain. Little clinical difference exists between these four types but symptoms appear most severe and seem to progress more quickly in children with type A. The average duration of Sanfilippo syndrome is 8 to 10 years following onset of symptoms. Most persons with MPS III live into their teenage years, and some live longer.

      Sanfilippo A is the most severe of the MPS III disorders and is caused by the missing or altered enzyme heparan N-sulfatase. Children with Sanfilippo A have the shortest survival rate among those with the MPS III disorders.
      Sanfilippo B is caused by the missing or deficient enzyme alpha-N-acetylglucosaminidase.
      Sanfilippo C results from the missing or altered enzyme acetyl-CoAlpha-glucosaminide acetyltransferase.
      Sanfilippo D is caused by the missing or deficient enzyme N-acetylglucosamine 6-sulfatase.
    The incidence of Sanfilippo syndrome is about one in 70,000 births.

    . . . MPS IV
    Mucopolysaccharidoses IV, Morquio syndrome, is estimated to occur in 1 in 700,000 births. Its two subtypes result from the missing or deficient enzymes N-acetylgalactosamine 6-sulfatase (Type A) or beta-galactosidase (Type B) needed to break down the keratan sulfate sugar chain. Clinical features are similar in both types but appear milder in Morquio Type B. Onset is between ages 1 and 3. Neurological complications include spinal nerve and nerve root compression resulting from extreme, progressive skeletal changes, particularly in the ribs and chest; conductive and/or neurosensitive loss of hearing; and clouded corneas. Intelligence is normal unless hydrocephalus develops and is not treated.

    Physical growth slows and often stops between the ages of 4-8. Skeletal abnormalities include a bell-shaped chest, a flattening or curvature of the spine, shortened long bones, and dysplasia of the hips, knees, ankles, and wrists. The bones that stabilize the connection between the head and neck can be malformed; in these cases, a surgical procedure called spinal cervical bone fusion can be lifesaving. Restricted breathing, joint stiffness, and heart disease are also common. Children with the more severe form of Morquio syndrome may not live beyond their twenties or thirties.

    . . . MPS V
    Children with Mucopolysaccharidoses VI, Maroteaux-Lamy syndrome, usually have normal intellectual development but share many of the physical symptoms found in Hurler syndrome. Caused by the deficient enzyme N-acetylgalactosamine 4-sulfatase, Maroteaux-Lamy syndrome has a variable spectrum of severe symptoms. Neurological complications include clouded corneas, deafness, thickening of the membrane that surrounds and protects the brain and spinal cord, and pain caused by compressed or traumatized nerves and nerve roots.

    Growth is normal at first but stops suddenly around age 8. By age 10 children have developed a shortened trunk, crouched stance, and restricted joint movement. In more severe cases, children also develop a protruding abdomen and forward-curving spine. Skeletal changes, particularly in the pelvic region, are progressive and limit movement. Many children also have umbilical or inguinal hernias. Nearly all children have some form of heart disease, usually involving valve dysfunction.

    An enzyme replacement therapy was tested on patients with MPS VI and was successful in that it improved growth and joint movement. An experiment was then carried out to see whether an injection of the missing enzyme into the hips would help the range of motion and pain.

    . . . MPS VI
    Mucopolysaccharidoses VII, Sly syndrome, one of the least common forms of the mucopolysaccharidoses, is estimated to occur in fewer than one in 250,000 births. The disorder is caused by deficiency of the enzyme beta-glucuronidase. In its rarest form, Sly syndrome causes children to be born with hydrops fetalis, in which extreme amounts of fluid are retained in the body. Survival is usually a few months or less. Most children with Sly syndrome are less severely affected. Neurological symptoms may include mild to moderate mental retardation by age 3, communicating hydrocephalus, nerve entrapment, corneal clouding, and some loss of peripheral and night vision. Other symptoms include short stature, some skeletal irregularities, joint stiffness and restricted movement, and umbilical and/or inguinal hernias. Some patients may have repeated bouts of pneumonia during their first years of life. Most children with Sly syndrome live into the teenage or young adult years.

    Symptoms:

  • Abnormal facial features
  • Bone, cartilage, and connective tissue deformities
  • Mental retardation

  • Treatment:
    Currently there is no cure for mucopolysaccharidoses. Medical care is directed at treating systemic conditions and improving the person's quality of life. Physical therapy and daily exercise may delay joint problems and improve the ability to move.

    Changes to the diet will not prevent disease progression, but limiting milk, sugar, and dairy products has helped some individuals experiencing excessive mucus.

    Surgery to remove tonsils and adenoids may improve breathing among affected individuals with obstructive airway disorders and sleep apnea. Sleep studies can assess airway status and the possible need for nighttime oxygen. Some patients may require surgical insertion of an endotrachial tube to aid breathing. Surgery can also correct hernias, help drain excessive cerebrospinal fluid from the brain, and free nerves and nerve roots compressed by skeletal and other abnormalities. Corneal transplants may improve vision among patients with significant corneal clouding.

    Enzyme replacement therapies are currently in use or are being tested. Enzyme replacement therapy has proven useful in reducing non-neurological symptoms and pain. Currently BioMarin Pharmaceutical produces enzyme replacement therapies for MPS type I and VI. In July 2006, the United States Food and Drug Administration approved a synthetic version of I2S produced by Shire Pharmaceuticals Group, called Elaprase, as a treatment for mucopolysaccharidoses type II.

    Bone marrow transplantation and umbilical cord blood transplantation have had limited success in treating the mucopolysaccharidoses. Abnormal physical characteristics, except for those affecting the skeleton and eyes, may be improved, but neurologic outcomes have varied. BMT and UCBT are high-risk procedures and are usually performed only after family members receive extensive evaluation and counseling.

    ...

    Custom Search



    Mucopolysaccharidoses

    return from Mucopolysaccharidoses, to... Arthritis L-N

    link to... Home Page




    ...less medical jargon in a 'Quick Glance' format!